The chart is oriented for
May 15 at 10 p.m. NZST
June 1 at 9 p.m.
June 15 at 8 p.m.
July 1 at 7 p.m.

Evening sky in June 2019

To use the chart, hold it up to the sky. Turn the chart so the direction you are looking is at the bottom of the chart. If you are looking to the south then have ‘South horizon’ at the lower edge. As the earth turns the sky appears to rotate clockwise around the south celestial pole, SCP on the chart. Stars rise in the east and set in the west, just like the sun. The sky makes a small extra westward shift each night as we orbit the sun.

Four naked-eye planets appear in the evening sky in June. Golden Jupiter appears in the east soon after sunset, the brightest ‘star’ in the sky. Saturn rises in the south-east around 7 pm mid-month. Mars is an orange star of medium brightness setting toward the north-west around 7 pm (so not on the chart.) It is joined by Mercury mid-month, much brighter then Mars. Mercury and Mars will be a close pair till the end of June. Sirius, the brightest true star, twinkle colourfully in the west. Canopus is in the southwest. South of overhead are the Pointers, Alpha and Beta Centauri, with the Southern Cross (Crux) to their right. Orange Arcturus, low in the north, often twinkle red and green.

Chart produced by Guide 8 software; www.projectpluto.com. Labels and words added by Alan Gilmour, University of Canterbury
Mt John Observatory, P.O. Box 56, Lake Tekapo 7945, New Zealand. www.canterbury.ac.nz
The Evening Sky in June 2019

Jupiter appears in the east soon after sunset, the brightest ‘star’ in the sky. It shines with a steady golden light. Around 7 pm **Saturn** rises in the southeast, well below and right of Jupiter. It is the second brightest ‘star’ in that part of the sky. The Moon will be below Saturn on the 19th.

On the opposite side of the sky, very low, is **Mars**. It looks like an orange-red star to the left of the vertical pair of Castor and Pollux, setting around 7 pm (so not on the chart). Left of Mars, and brighter, is the orange star Betelgeuse in Orion (also not shown). In the third week of June **Mercury** moves up the twilight sky below and left of Mars. It is white and brighter than Mars. The two planets will make a close pair around the 18th. Mercury then moves higher than Mars.

Sirius, the brightest true star, appears in the west soon after sunset. It sets in the southwest around 9 pm, mid-month, twinkling like a diamond. Sirius appears bright both because it is 20 times brighter than the sun, and because it is relatively close at nine light years*. **Canopus**, the second brightest star, is in the southwest. It is a truly bright star, 310 light years away and 13,000 times brighter than the sun. Canopus is a ‘circumpolar’ star: it circles the South Celestial Pole (SCP on the chart) clockwise but never sets.

Arcturus, another orange star, appears in the lower north sky, often twinkling red and green when it is near the horizon.

Jupiter’s disk and four ‘Galilean’ moons can be seen any telescope. We are seeing the moons’ orbits nearly edge-on so they appear to move back and forth like beads on a string, swapping places night to night. Io, the closest to Jupiter, orbits in 1¾ days. Callisto, the farthest of the four, takes nearly 17 days to complete an orbit. Jupiter is 640 million km away. **Saturn** is 1,360 million km away. A small telescope shows its rings and its biggest moon, Titan, orbiting about four ring-diameters from the planet.

Crux, the Southern Cross, is south of the zenith. Beside it, and brighter, are Beta and **Alpha Centauri**, often called ‘The Pointers’ because they point at Crux. Alpha Centauri is the closest naked-eye star, 4.3 light years away. Beta Centauri and many of the stars in Crux are hot, extremely bright blue-giant stars hundreds of light years away.

Antares, the orange star above Jupiter, marks the scorpion's body. It is a red giant star: 600 light years away and 19 000 times brighter than the sun. Below Scorpius and right of Jupiter is **Sagittarius**, its brighter stars making 'the teapot'.

The Milky Way is brightest and broadest in the southeast toward Scorpius and Sagittarius. It remains bright but narrower through Crux and Carina then fades in the western sky. The Milky Way is our edgewise view of the galaxy, the pancake of billions of stars of which the sun is just one. The thick hub of the galaxy, 30 000 light years away, is in Sagittarius. A scan along the Milky Way with binoculars will find many clusters of stars and some glowing gas clouds. Relatively nearby dark clouds of dust and gas look like holes and slots in the Milky Way. The dust, more like smoke, comes from old red stars like Antares. These clouds eventually coalesce into new stars.

The Clouds of Magellan, LMC and SMC, in the lower southern sky, are luminous patches easily seen by eye in a dark sky. They are two small galaxies about 160 000 and 200 000 light years away. The Large Cloud is about 5% the mass of the Milky Way; the Small Cloud is about 3%.

Brilliant **Venus** (not shown on the chart) rises in the northeast sky after 6 a.m. at the beginning of the month; around 7 a.m. at the end. Around the 12th Venus will be between the orange star Aldebaran, to its right, and the Matariki/Pleiades star cluster to its left. Twilight will be too bright to see Matariki by eye then but it should be easily visible a week later above and left of Venus.

A light year (l.y.) is the distance that light travels in one year: nearly 10 million million km or 10\(^{13}\) km. Sunlight takes eight minutes to get here; moonlight about one second. Sunlight reaches Neptune, the outermost major planet, in four hours. It takes sunlight four years to reach the nearest star, Alpha Centauri.
Southern Evening Sky in May-June
The chart shows the southern sky. Interesting star clusters and nebulae are indicated with asterisks. They are described on the other side of this page.
Interesting Objects in the Winter Southern Sky

Centaurus, with the bright 'Pointers', and **Crux**, the Southern Cross are south of overhead, the tightest grouping of bright stars in the whole sky. Originally Crux was the hind legs of the Centaur, the horse-man of Greek mythology. The complete Centaur, with bow, is outlined at left. It was only in the 17th Century that Crux was split off as a separate constellation. The slow wobble of Earth's axis allowed this part of the sky to be seen from more northerly places in ancient times. The fainter Pointer and the three bluish-white stars of the Crux are all super-bright stars hundreds of light years away. Alpha Centauri is just 4.3 light years away and the reddish top star of Crux is 90 light years from us.

Omega Centauri, nearly overhead, is a globular cluster, a ball-shaped cluster of millions of stars. Its total mass is six million times the sun's. It is 17 000 light years away and 200 light years across. Globular clusters are very ancient, around 10 billion years old, twice the age of the sun. Omega Centauri is the biggest of the hundred-odd globulars randomly orbiting our galaxy. It may originally have been the core of a small galaxy that collided with the Milky Way and was stripped of its outer stars. 47 Tucanae, near the SMC, is a similar but smaller cluster about 16 000 light years away.

Coalsack nebula, left of Crux, looks like a hole in the Milky Way. It is a cloud of dust and gas 600 light years away, dimming the distant stars in the Milky Way. Many 'dark nebulae' can be seen along the Milky Way, appearing as slots and holes. These clouds eventually form new stars.

The Jewel Box is a compact cluster of young bright stars about 7000 light years away. The cluster formed about 16 million years ago. To the eye it looks like a faint star close by the second-brightest star in Crux. A telescope is needed to see it well.

Eta Carinae nebula, a luminous spot in the Milky Way to the right of Crux and lower, is a glowing gas cloud about 8000 light years from us. The thin gas glows in the ultra-violet light of nearby hot young stars.

The golden star in the cloud, visible in binoculars, is Eta [Greek 'e'] Carinae. It is estimated to be to be 80 times heavier than the sun. It is four million times brighter than the sun but is dimmed by dust clouds around it. It is expected to explode as a supernova in the next few thousand years. Many star clusters are found in this part of the sky.

Large & Small Clouds of Magellan (LMC & SMC) appear as two luminous clouds, easily seen by eye in a dark sky. They are galaxies like the Milky Way but much smaller. Each is made of billions of stars. The LMC contains many clusters of young bright stars seen as spots of light in binoculars. The LMC is 160 000 l.y away; the SMC 200 000 l.y. Both are very close by for galaxies.

Tarantula nebula is a glowing gas cloud in the LMC. The gas glows in the ultra-violet light from a cluster of very hot stars at the centre of the nebula. The cloud is about 800 light years across. It is easily seen in binoculars and can be seen by eye on moonless nights.

This nebula is one of the brightest known. If it was as close as the Orion nebula then it would be as bright as the full moon.

* A **light year** (l.y.) is the distance that light travels in one year: nearly 10 million million km, or 10^{13} km. Sunlight takes eight minutes to get here; moonlight about one second. Sunlight reaches Neptune, the outermost major planet, in four hours. It takes four years to reach the nearest star, Alpha Centauri.
Eastern Evening Sky in June, 2019

The chart shows the eastern sky at nightfall. Jupiter, the brightest 'star' in the evening sky, highlights the area. Above it is orange Antares marking the body of Scorpius. The scorpion is on its back. Cream-coloured Saturn is on the lower edge of the chart. The Milky Way is here bright and broad as we look toward the centre of the galaxy. Many star clusters and a few nebulae (glowing gas clouds) are seen, some obvious to the naked eye. Those visible in binoculars or small telescopes are indicated with asterisks. They are described in the chart notes.

Chart produced by Guide 8 software; www.projectpluto.com. Labels added by Alan Gilmore, University of Canterbury's Mt John Observatory, P.O. Box 56, Lake Tekapo 7945, New Zealand. www.canterbury.ac.nz
Interesting Objects in the Eastern Sky in Early Winter 2019

Jupiter is the beacon for this region. It is the brightest 'star' in the evening sky and shines with a steady golden light. Above Jupiter is orange **Antares**. Well below and right of Jupiter is cream-coloured **Saturn**, the second-brightest star in this part of the sky.

Antares is orange coloured being a 'red giant' star. The 'red' of red giants is usually more of an orange tint. It is 600 light years* away, 19 000 times brighter than the sun at visible wavelengths but much brighter in the infra-red. Its diameter is estimated to be around 800 million km, well beyond the diameter of Mars's orbit. Its mass or weight is about 12 times that of the sun, so most of the star is very thin gas spread around a hot dense core. Red giants are the last stage in the evolution of stars. The dense core of the star has shrunk and heated up. The outer regions of the star have expanded to a thin red-hot gas. The core is wringing the last of the thermo-nuclear energy from elements like helium, carbon, oxygen and neon. Soon, in astronomical terms, the core of Antares will run out of energy and collapse, triggering a spectacular supernova explosion.

'Antares' is Greek for 'Rival to Mars' as it is about the average brightness and colour of Mars. (When close to us Mars is much brighter.) Antares marks the body of Scorpius. In the evening at this time of year the Scorpion is on its back with its tail on the right, curving upward then turning down and curling clockwise. The sting is the horizontal line of bright stars pointing toward Antares. In Maori star lore the tail's hook is the 'fish hook of Maui'. By midnight the scorpion's tail is directly overhead.

At the right-angle bend in the tail is a large and bright cluster of stars, **NGC 6231**, looking like a small comet. It is around 6000 l.y. away. Its brightest stars are 60 000 times brighter than the sun. The cluster is about 8 light years across, similar in size to the Pleiades/Matariki cluster in our summer sky. Were it as close as the Pleiades (440 l.y.) then its brightest stars would be as bright as Sirius. Below the Scorpion's sting is **M7** a cluster obvious to the eye and nicely seen in binoculars. M7 is about 800 l.y. away and around 260 million years old. The older a star cluster, the fewer bright stars it has.

Left of M7 and fainter is **M6**, the 'butterfly cluster'. M6 is around 1300 l.y. away and is half the age of M7. Other clusters worth a look in binoculars are **M21, M23, NGC 6167**, and **NGC 6193**. The 'M' objects were catalogued by the 18th Century French astronomer Charles Messier. He hunted comets, so made a catalogue of fuzzy objects that could be mistaken for comets. The NGC (New General Catalogue) objects shown are bright enough to have been seen by Messier but are too far south to be seen from Paris where he worked.

Midway between Jupiter and Saturn is the glowing gas cloud **M8**, the 'Lagoon Nebula'. It is a star-forming region where gas and dust have recently gathered into new stars. Ultraviolet light from one particularly hot star is lighting up the leftover gas, making it glow. On colour photos it appears pink due to hydrogen atoms fluorescing in the UV light. Below M8 is **M20**, the Trifid Nebula, small glowing patch in binoculars, also a pink hydrogen region in photos. Right alongside it is a blue reflection nebula where starlight is scattered by dust. Other nearby nebulae (gas and dust clouds) are **M16** and **M17**.

Globular clusters, spherical clusters of ancient stars, are found throughout the region. The brightest is **M4 by Antares**. It is also one of the closest at 10 000 l.y. away. In binoculars and small telescopes 'globs' appear as round fuzzy spots. Others marked on the chart are **M9, M10, M12, M14, M19, M22, M55, M54, M62, M80 and NGC 6541**. The concentration of globular clusters in this area was an early clue that the centre of the galaxy lay in this direction.

This part of the Milky Way is broad and bright as we are looking to the centre of the galaxy. The actual centre, 30 000 light years away, is hidden from our view by intervening dust clouds. The nearer clouds make gaps and slots along the Milky Way. The hub of the galaxy is a great sphere of stars, called the 'central bulge'. Some of the central bulge is glimpsed in gaps between the dust clouds. At the very centre lies a black hole four million times the sun's mass but only the size of our solar system. Infra-red telescopes, peering through the dust, show stars orbiting the invisible black hole at high speed.

Notes by Alan Gilmore, University of Canterbury's Mt John Observatory, P.O. Box 56, Lake Tekapo 7945, New Zealand.

www.canterbury.ac.nz

190509